8,064 research outputs found

    Modeling high-energy pulsar lightcurves from first principles

    Full text link
    Current models of gamma-ray lightcurves in pulsars suffer from large uncertainties on the precise location of particle acceleration and radiation. Here, we present an attempt to alleviate these difficulties by solving for the electromagnetic structure of the oblique magnetosphere, particle acceleration, and the emission of radiation self-consistently, using 3D spherical particle-in-cell simulations. We find that the low-energy radiation is synchro-curvature radiation from the polar-cap regions within the light cylinder. In contrast, the high-energy emission is synchrotron radiation that originates exclusively from the Y-point and the equatorial current sheet where relativistic magnetic reconnection accelerates particles. In most cases, synthetic high-energy lightcurves contain two peaks that form when the current sheet sweeps across the observer's line of sight. We find clear evidence of caustics in the emission pattern from the current sheet. High-obliquity solutions can present up to two additional secondary peaks from energetic particles in the wind region accelerated by the reconnection-induced flow near the current sheet. The high-energy radiative efficiency depends sensitively on the viewing angle, and decreases with increasing pulsar inclination. The high-energy emission is concentrated in the equatorial regions where most of the pulsar spindown is released and dissipated. These results have important implications for the interpretation of gamma-ray pulsar data.Comment: 14 pages, 11 figures, Accepted for publication in MNRA

    Ab-initio pulsar magnetosphere: the role of general relativity

    Full text link
    It has recently been demonstrated that self-consistent particle-in-cell simulations of low-obliquity pulsar magnetospheres in flat spacetime show weak particle acceleration and no pair production near the poles. We investigate the validity of this conclusion in a more realistic spacetime geometry via general-relativistic particle-in-cell simulations of the aligned pulsar magnetospheres with pair formation. We find that the addition of frame-dragging effect makes local current density along the magnetic field larger than the Goldreich-Julian value, which leads to unscreened parallel electric fields and the ignition of a pair cascade. When pair production is active, we observe field oscillations in the open field bundle which could be related to pulsar radio emission. We conclude that general relativistic effects are essential for the existence of pulsar mechanism in low obliquity rotators.Comment: 5 pages, 4 figure, submitted to ApJLetter

    Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: An explanation of the Crab flares

    Full text link
    It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electrons. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of 2D particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.Comment: 15 pages, 16 figures, Accepted for publication in The Astrophysical Journa

    An exploratory study on internet addiction, somatic symptoms and emotional and behavioral functioning in school-aged adolescents

    Get PDF
    Objective: In the last two decades there has been a significant transformation regarding the use of new technologies. Despite growing acknowledgement concerning the different activities and functions of digital technologies, there remains a lack of understanding on how technology overuse may negatively impact both physical and psychosocial well-being. Although researchers have begun to explore the meaning and implications of excessive Internet use in non-clinical populations of children and adolescents, there is still little consistent knowledge on the topic. This study aimed to extend existing knowledge on the excessive use of the Internet among school-aged adolescents, focusing on its association with recurrent somatic symptoms, depressive risk and behavioral and emotional problems. Method: Two hundred and forty adolescents (51.9% females) aged between 10 and 15, participated in this study. Data was collected using the Children’s Somatization Inventory, the Internet Addiction Test, the Children’s Depression Inventory, the Youth Self Report and the Emotion Regulation Questionnaire. Structural Equation Model analysis was used to analyse the data. Results: Approximately 21.8% of participants reported excessive Internet use based on Young’s criteria. Higher levels of Internet use were associated with somatic and depressive symptoms as well as emotional and behavioral problems. Depressive Symptoms predicted both Internet Addiction (b = 0.304, p < 0.001) and Internalizing (b = 0.542, p <0.001) and Externalizing problems (b = 0.484, p < 0.001). Internet Addiction also significantly predicted both Internalizing (b = 0.162, p = 0.02) and Externalizing problems (b = 0.183, p = 0.02). Finally, Structural Equation Modeling showed that the indirect effect of Depressive Symptoms (via Internet Addiction) on Internalizing or Externalizing problems were significant. Conclusions: Longitudinal studies are needed to confirm these findings and to identify the mechanisms linking Internet use, somatic symptoms and adaptive functioning

    A static scheduling approach to enable safety-critical OpenMP applications

    Get PDF
    Parallel computation is fundamental to satisfy the performance requirements of advanced safety-critical systems. OpenMP is a good candidate to exploit the performance opportunities of parallel platforms. However, safety-critical systems are often based on static allocation strategies, whereas current OpenMP implementations are based on dynamic schedulers. This paper proposes two OpenMP-compliant static allocation approaches: an optimal but costly approach based on an ILP formulation, and a sub-optimal but tractable approach that computes a worst-case makespan bound close to the optimal one.This work is funded by the EU projects P-SOCRATES (FP7-ICT-2013-10) and HERCULES (H2020/ICT/2015/688860), and the Spanish Ministry of Science and Innovation under contract TIN2015-65316-P.Peer ReviewedPostprint (author's final draft
    • …
    corecore